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ABSTRACT: A new equation is presented for sediment fall velocity as
a function of grain diameter for given values of fluid viscosity and fluid
and solid density. Sediment fall velocity is a fundamental parameter
in the modeling and interpretation of fluviatile and coastal deposition.
The equation applies to the entire range of viscous to turbulent con-
ditions, and its simple explicit form makes it easy to use in computer
models and other applications in sedimentology, geomorphology, and
engineering. The equation is derived from dimensional analysis and
converges on Stokes’ law for small grains and a constant drag coeffi-
cient for large grains. Its two physically interpretable parameters are
easily adjusted for shape effects or for the use of sieve diameter rather
than nominal grain diameter. It gives a close fit to published and new
experimental data for both quartz sand and low-density materials, with
no more error than previous equations of more complicated form.

BACKGROUND

The velocity with which particles of specified size settle in water is a
fundamental variable in physical sedimentology. The dependence of fall
velocity on particle size leads to vertical size sorting when grains settle in
standing water, and longitudinal sorting when grains settle from a decel-
erating current as in deltaic environments. Sorting according to fall velocity
also occurs during fluvial transport: depending on the shear velocity of the
flow, particles below some critical size travel in suspension whereas larger
ones travel as bedload. A quantitative knowledge of how fall velocity varies
with sediment size is essential for modeling any of these or similar sorting
processes, and for interpreting depositional environments in the rock re-
cord.

This knowledge exists for small particles whose settling is dominated by
viscous drag, and for large particles whose settling is dominated by inertial
forces, but for particles of intermediate size the precise nature of the re-
lation is not agreed. For quartz-density particles settling in water the tran-
sitional range spans all but the finest sand, and extends a little way into
the gravel range. This is a particularly important range in some applica-
tions. For example, the settling of sand from suspension in rivers may be
a factor in the often abrupt transition from a gravel bed to a sand bed
(Sambrook Smith and Ferguson 1995; Dade and Friend 1998). In this paper
we present a simple, explicit equation for fall velocity over the entire size
range, including the transitional region, and show that it agrees well with
published and new experimental data. The equation is intended to be ap-
plicable when all that is known is the sieve size of the grains concerned.
Many previous formulations require measurements of individual axis
lengths in order to compute the nominal diameter of an equivalent sphere,
and in one case also a shape factor. This information is seldom available
in large-scale fluvial or oceanographic research and modeling, so a parsi-
monious approach is highly attractive.

THEORY

The slow settling of small particles is resisted by the viscous drag of the
laminar flow around each grain. For solitary spherical particles it follows
Stokes’ law:
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where w denotes the particle’s fall velocity, D its diameter, R its submerged
specific gravity (1.65 for quartz in water), g the acceleration due to gravity,
n the kinematic viscosity of the fluid (1.0 3 1026 kg m21 s21 for water
at 208C), and C1 a constant with a theoretical value of 18. Fall velocity
therefore increases as the square of particle diameter. Fall velocities of
nonspherical particles, rough particles, or particles in very high concentra-
tions are somewhat lower (i.e., C1 is larger), as reviewed in standard texts
such as Raudkivi (1990). Stokes’ law holds for particle Reynolds numbers
(Re 5 wD/n) below a value of about 1.

The rapid settling of large particles is resisted predominantly by the
turbulent drag of the wake behind each grain. It can be represented by

4RgD
w 5 (2)! 3C2

where C2 is the constant asymptotic value of the drag coefficient CD 5
4RgD/3w2 at 103 , Re , 105. Numerous experimental investigations have
shown that C2 ø 0.4 for smooth spheres, and C2 ø 1 for natural grains
with some departure from sphericity and possible angularity of edges (see
review in Cheng 1997). Equation 2 implies that fall velocity varies as only
the square root of particle diameter, instead of the square as in Stokes’ law.

Many alternative graphs and empirical equations have been presented
for natural grains in the transitional range 1 , Re , 103, which corre-
sponds to about 0.1 , D , 4 mm for quartz sand settling in water. The
earliest equation we know is by Hallermeier (1981), who proposed Re 5
A0.7/6 for the range 39 , A , 104, where A is what Yalin (1972) termed
the Archimedes or buoyancy index, A 5 RgD3/n2. This implies w } D1.25

in the transitional range. Hallermeier used sieve diameter in calculating A
and Re. In combination with Stokes’ law for lower values of A, and CD

5 1.2 for higher values, his equation gave an overall root-mean-square
(rms) prediction error of 6 15% for a set of 115 experimental values of
settling velocity from 13 sources. Van Rijn (1989) suggested that a practical
calculation for river sands was to use Stokes’ law for D , 0.1 mm, a
constant CD of 1.1 for D . 1 mm, and Re 5 10 [(1 1 0.01A)0.5 2 1]
for the transitional range. Van Rijn’s relation is discontinuous in level at
the joins of its three parts, and Hallermeier’s is discontinuous in slope.
Ahrens (2000) tried to avoid discontinuities by suggesting a universal equa-
tion of the form Re 5 k1A 1 k2A0.5 but found that the constants k1 and
k2 had to be expressed as complicated functions of A to match the fit of
Hallermeier’s three-part relation.

Dietrich (1982) presented a much more detailed analysis based on .
1000 experimental values from a variety of published sources. He related
w* 5 w3/Rgn to A (which he called D*), using nominal diameter to com-
pute A. In a three-stage procedure he fitted log w* 5 R1 1 R2 1 log R3,
where R1 is the trend for smooth spherical particles, R2 is a correction for
shape effects, and R3 is a correction for roundness effects. R1 is a fourth-
order polynomial in log A, fitted to the relevant subset of the data plus a
large set of low-D points complying with Stokes’ law. R2 is a complicated
function of log A and the Corey shape factor (CSF) and was fitted to
residuals from R1. R3 is a complicated function of log A, CSF, and the
Powers roundness index (PRI) and was fitted to residuals from R2. The full
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expression contains 15 empirical coefficients. It gave an excellent fit to the
data on which it was calibrated, and is the only relation known to us that
makes specific and separate allowance for shape and roundness effects.
Dietrich suggested that typical natural grains have CSF 5 0.7 (on a 0–1
scale) and PRI 5 3.5 (0–6 scale). For quartz in water this gives a reduction
in fall velocity (compared to a spherical grain) of 10, 20, or 40% for D 5
0.02, 1, or 10 mm according to our calculations. By comparison with Equa-
tions 1 and 2 this implies that the ‘‘natural’’ values of C1 and C2 are 20
and 1.1 respectively, instead of 18 and 0.4 for smooth spheres.

Other researchers, including most recently Cheng (1997), have suggested
universal relations between CD and Re. These usually give only implicit
relations between w and D, but Cheng’s proposal of CD 5 [(32/Re)0.67 1
1]1.5 gives an explicit equation. It applies to natural grains using nominal
diameter, and is asymptotic to CD 5 1.0 for coarse grains and to Stokes’
law with a constant of 24 (not 18) for fine grains. Cheng showed that his
relation fitted a selection of experimental data better than several previous
universal or multi-part relations in the engineering literature, including that
of van Rijn, but his comparison did not include relations proposed by
sedimentologists such as Hallermeier (1981) or Dietrich (1982).

Here we present a dimensionally correct explicit equation which reduces
asympotically to Equation 1 for small grains and Equation 2 for large ones,
can be used for either sieve diameter or nominal diameter, fits published
and new experimental data in the transitional range as well as previous
relations, but is simpler than any of them.

DIMENSIONAL ANANYSIS AND PROPOSED EQUATION

The relation between fall velocity w [dimensions L T21] and particle
diameter D [L] is expected to depend on the kinematic viscosity n [L2T21]
and density r [M L23] of the fluid, and the immersed unit weight g 5
(rs 2 r)g [M L2T22] of the sediment. The relation should therefore be
fully describable using two nondimensional groups. The standard dimen-
sional analysis of settling takes w and D as nonrepeating variables and
leads to the groups w* and D* (or A) used by Dietrich (1982). The alter-
native pursued here is to take D as a repeating variable, with w and n non-
repeating. This gives groups w9 5 w /(RgD)0.5 and n9 5 n/(RgD3)0.5. These
are inversely related to CD and A, respectively: w9 5 (4/3CD)0.5 and v9 5
1/A0.5.

The general relation between w9 and n9 must reduce to Equation 1 at
small D and Equation 2 at large D: that is, to 1/w9 5 C1n9 and 1/w9 5
(0.75C2)0.5 respectively. The simplest possible function which gives these
asymptotic limits is their sum:

1
0.55 C v9 1 (0.75C ) (3)1 2w9

This yields a simple explicit equation for fall velocity as a function of
diameter:

2RgD
w 5 (4)

3 0.5C v 1 (0.75C RgD )1 2

in which the parameters C1 and C2 take values of 18 and 0.4 for smooth
spheres, but somewhat higher values for natural grains as discussed later.
The viscosity term in Equations 3 and 4 dominates for small D but becomes
negligible for large D. The relation therefore reduces to Stokes’ law with
constant C1 for fine sediment but to a constant drag coefficient C2 for coarse
sediment. It can also be expressed as an explicit equation for the drag
coefficient:

22C v1C 5 1 ÏC (5)D 21 23Ï3RgD

Again the viscosity term dominates for small D but becomes negligible for
large D.

Equation 4 is the key result of this paper. It is the simplest possible
dimensionally consistent equation for fall velocity in the transitional range
and, as we show below, it also gives a close fit to experimental fall veloc-
ities.

EVALUATION AND TESTING

We assess the utility of Equation 4 in three stages. The first is to compare
it visually with the plots of some previous equations for standard conditions
of quartz grains falling in water at 208C. We then quantify the goodness
of fit of Equation 4 and some of its predecessors to experimental data
assembled by Raudkivi (1990) and Hallermeier (1981). Thirdly, we report
new experiments on the fall velocity of natural river sands and use them
for a further test of our proposed equation.

Comparison with Previous Curves and Experimental Data

Equation 4 is plotted in Figure 1A for the case of quartz-density sediment
(R 5 1.65) settling in water at 208C and with three combinations of values
for the parameters C1 and C2: 18 and 0.4 as the limit for smooth spheres,
24 and 1.2 as the likely opposite extreme for angular natural grains, and
18 and 1.0 as a possible intermediate relation for grains of varied shape.
The relations proposed by Cheng (1997) and Dietrich (1982) are plotted in
Figure 1B for comparison, with separate curves for the spherical and natural
versions of Dietrich’s relation. To facilitate comparison, both plots include
the expected asymptotic trends for spherical particles (Stokes’ law and a
constant CD of 0.4) and some published experimental data for ‘‘naturally
worn’’ quartz grains with CSF 5 0.7 (Raudkivi 1990, Table 2.2, based on
a U.S. Federal Inter-Agency Committee report). The data are reported using
nominal grain diameter, as assumed in most of the published predictive
equations.

Figure 1A shows that for diameters below 0.1 mm and above 2 mm our
equation is indistinguishable from power laws with slopes of 2 and 0.5,
respectively, in accordance with Stokes’ law and a constant drag coeffi-
cient. An increase in C1 pulls the lower left end of the curve down, and
an increase in C2 pulls the top right end down. With C1 5 18 and C2 5
0.4 it is asymptotically the same as Dietrich’s relation for spheres (Fig. 1B)
at the fine and coarse ends of the size range, but it plots slightly higher in
the transitional region. With C1 5 24 and C2 5 1.2 it plots slightly below
Dietrich’s ‘‘natural’’ relation for all sizes, though more so at the fine end;
conversely, it is asymptotically the same as Cheng’s relation for small
grains but plots slightly lower for medium and large grains, because
Cheng’s asymptote is equivalent to C2 5 1.0. With the intermediate values
C1 5 18 and C2 5 1.0 our equation plots slightly higher than Cheng’s for
all sizes below about 8 mm, and slightly higher than Dietrich’s ‘‘natural’’
relation in the range 0.08–0.8 mm, but very close to Dietrich’s for sizes
below 0.08 mm and above 0.8 mm. We noted above that Dietrich’s ‘‘nat-
ural’’ relation for CSF 5 0.7 is asymptotically equivalent to C1 5 20 and
C2 5 1.1 in our terms. With these parameter values our relation is visually
almost indistinguishable from his, with predictions that are never more than
4% lower or 8% higher.

The experimental data lie between the extreme curves in each plot, as
would be expected. The fit of our and previous equations to the data in
Figure 1 is summarized in the first three columns of Table 1, and it throws
some light on the question of assigning values to C1 and C2. We assess fit
here and later by the root-mean-square prediction error (rmse), defined as
the standard deviation of the percentage prediction error for each data point,
100(p 2 o)/o, where p and o denote predicted and observed fall velocity.
Hallermeier’s and Ahren’s equations are for sieve diameter, not nominal
diameter; the nominal grain diameters were therefore reduced by 10%,
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FIG. 1.—Predicted relation between fall velocity and diameter for quartz grains in water at 208C according to A) Equation 4 and B) previous authors. Straight lines in
both plots show expected asymptotic trends for smooth spheres (Stokes’ law with C1 5 18, and constant drag coefficient C2 5 0.4). Points labeled FIASC are experimental
values from the U.S. Federal Inter-Agency Sedimentation Conference as listed in Raudkivi (1990). Upper, middle, and lower curves in Part A are for spherical, natural,
and angular grains using C1, C2 shown in legend. Upper and middle curves in Part B are Dietrich’s (1982) relation for spheres and natural grains, respectively; lower curve
is Cheng’s (1997) equation.

TABLE 1.—Mean and root-mean-square (rms) percentage errors in predicting ex-
perimental values of fall velocity.

Prediction Equation

Data from
Raudkivi (1990)

Mean Error Rms Error

Data from
Hallermeier (1981)

Mean Error Rms Error

Hallermeier (1981)
Dietrich (1982): spheres
Dietrich (1982): natural
Van Rijn (1989)
Cheng (1997)

1
19

21
9

27

5
23

5
12

7

1*
25

1
8

24

15*
40
17
22
16

Ahrens (2000)
Eq. 4: C1 5 18, C2 5 0.4
Eq. 4: C1 5 18, C2 5 1.0
Eq. 4: C1 5 20, C2 5 1.1
Eq. 4: C1 5 24, C2 5 1.2

21
45

7
0

28

2
47

8
4
9

1*
33

21
27

215

15*
44
16
17
22

A positive mean error represents overprediction. Errors are starred (*) if the experimental data were sued
to calibrate parameters in the prediction equation.

which is the typical difference between the different definitions for grains
of CSF ø 0.7 according to Raudkivi (1990, p. 18).

As would be expected, when parameter values for smooth spheres are
used in our and Dietrich’s equations the fit to data for natural grains is
poor, with considerable overprediction at all grain sizes. At the other ex-
treme, Cheng’s equation and our equation with ‘‘angular’’ values under-
predict systematically for small and large grains, but their good fit for
intermediate sizes keeps the rmse below 10% in each case. Our equation
with ‘‘intermediate’’ parameter values overpredicts the experimental fall
velocities in the middle of the data range but again does moderately well
overall with rmse below 10%. The best fits are by the relations of Ahrens
(rmse only 2%), Hallermeier (5%), and Dietrich (5% with ‘‘natural’’ pa-
rameter values) and by our equation with Dietrich-equivalent values of C1

5 20 and C2 5 1.1 (rmse 4%). This confirms that our equation gives
results comparable with the best previous equations when the parameter
values used are compatible with the shape characteristics of the natural
grains in the experiments.

For a second test of predictive ability we use the data assembled by
Hallermeier (1981) from several previous sources. These data relate to the
settling of quartz sand and lower-density natural materials, such as pumice,
in water at various temperatures. The data set is much bigger than Raud-

kivi’s (n 5 115), and the range of densities and temperatures provides a
check on the way these variables are incorporated in the new dimensional
analysis underlying our relation. Grains in this data set were stated by
Hallermeier to be ‘‘somewhat angular’’ but no quantitative measures of
shape or roundness are reported. Grain diameters in this data set are based
on sieving, so were increased by 10% to estimate nominal diameters for
equations using these. A graphical comparison like Figure 1 is no longer
possible because of the variety of densities and viscosities in this data set,
but we report goodness of fit in the right-hand columns of Table 1.

The relations of Hallermeier (1981) and Ahrens (2000) were calibrated
to these data and not surprisingly give the best fits (rmse 15% in each
case), but several other equations perform almost as well. Those of Cheng
(1997) and Dietrich (1982, ‘‘natural’’ parameters) give rmse 16% and 17%,
respectively. Our equation 4 using sieve diameters and the ‘‘intermediate’’
parameter values C1 5 18 and C2 5 1.0 also gives a good fit to these
data, with rmse 16%. The predictions lie close to the 1:1 line when plotted
against measurements (Fig. 2), and the correlation between logarithms of
observed and predicted values exceeds 0.99 despite the presence of one
outlier which all equations underpredict by about 60%. The good fit of
Equation 4 to Hallermeier’s data, which contain a wide range in particle
density and a moderate range in viscosity, suggests that our novel dimen-
sional analysis correctly captures the effect of these grain and fluid con-
ditions. If nominal diameter is used in our equation, the fit for parameter
values 18 and 1.0 is slightly less good (rmse 17%) but that for Dietrich-
equivalent values (20 and 1.1) improves (rmse 16%). In summary, for
Hallermeier’s (1981) data as well as Raudkivi’s (1990) data, the new equa-
tion has predictive ability similar to that of the best previous relations.

Comparison with New Experimental Data

As a further test of our proposed relation we have performed new set-
tling-column experiments with natural sand grains falling in water at 23–
248C. The purpose of this work was to obtain data with high precision in
both fall velocity and grain diameter, by making replicate measurements
on grains from narrow sieve classes. We chose to define grain diameter in
terms of sieve meshes because our goal is a simple equation that can be
used in larger-scale studies of rivers, including computer models. Such
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FIG. 2.—Agreement between experimental data of Hallermeier (1981) and predic-
tions of fall velocity using Equation 4 with ‘‘natural’’ coefficient values (C1 5 18,
C2 5 1.0).

FIG. 3.—Predicted relation between fall velocity and sieve diameter, using C1 5
18 and C2 5 1.0 in Equation 4, compared to new experimental data for natural river
sands (see text for details). Straight lines are the two asymptotes of the equation:
Stokes’ law and a constant drag coefficient of 1.0.

TABLE 2.—New experimental measurements of fall velocity of natural river sands.

D (mm) # of Values
w (m s21) 6

Standard Error

0.068
0.081
0.096
0.115
0.136
0.273

46
42
55
54
54
53

0.0425 6 0.00009
0.0060 6 0.0001
0.0075 6 0.0001
0.0110 6 0.0002
0.0139 6 0.0001
0.0388 6 0.0002

0.386
0.55
0.77
1.09
2.18
4.36

57
52
58
42
44
42

0.0551 6 0.0005
0.0729 6 0.0010
0.0930 6 0.0016

0.141 6 0.002
0.209 6 0.002
0.307 6 0.003

See text for details of experiments. D denotes geometric-mean sieve diameter.

TABLE 3.—Mean and root-mean-square (rms) percentage errors in predicting new
experimental values of fall velocity.

Equation Mean Error Rms Error

Hallermeier (1981)
Dietrich (1982): spheres
Dietrich (1982): natural
Van Rijn (1989)
Cheng (1997)

7
26
2

18
24

13
33
7

22
6

Ahrens (2000)
Eq 4: C1 5 18, C2 5 0.4
Eq 4: C1 5 18, C2 5 1.0
Eq 4: C1 5 20, C2 5 1.1
Eq 4: C1 5 24, C2 5 1.2

4
27

21
28

217

9
35
6

10
19

A positive mean error represents overprediction.

studies normally characterize sediment mixtures in terms of bulk compo-
sition by sieve size, not on the basis of individual grain-axis measurements.
The grains were obtained from bulk samples of bed material in the lower
Fraser River in western Canada. They were mainly quartz or feldspar but
with a few darker minerals. We made a large number of replicate mea-
surements of w for each of 12 narrow (quarter-phi) sieve size classes rang-
ing from 0.062–0.074 mm to 4.0–4.8 mm. For the three coarsest sizes,
individual grains of compact shape were timed by pairs of students over a
settling distance of 1.0 m in a cylinder of length 1.2 m. The internal di-
ameter was 0.14 m, which is an order of magnitude larger than necessary
to avoid wall drag effects. The experimenters did not know the theoretically
expected outcome. A total of 47 measurements were made for each size
class. The experiments on sizes below 1 mm were made in the same cyl-
inder by the second author, with 60 replicates per size class. A few tens
of grains were introduced, and one grain near the center of the cloud (and
thus presumably neither of high density nor strongly aspherical) was se-
lected for timing over a distance of 0.2 to 0.6 m, depending on how low
the start line for timing had to be for grains to reach terminal velocity.

The mean settling time for each size was calculated, and also the standard
deviation. Grains falling outside 6 2 standard deviations were then ex-
cluded, and the statistics recalculated, in an iterative procedure until all
grains were within this tolerance. This excluded only a few grains except

in the two finest classes. The excluded grains either fell more slowly than
the others with visible oscillations suggestive of a flattened shape, or faster
than the others presumably because they were of higher density than quartz.
The high degree of replication, avoidance of the leading edge of the group
of grains, and subsequent elimination of outliers were collectively meant
to avoid spuriously high fall velocities associated with heavy minerals, but
we cannot be absolutely certain that we succeeded completely in this. The
mean fall velocities after this quality-control procedure, and the standard
errors of these means, are listed in Table 2. The iterative deletion of outliers
had very little effect on the mean values but reduced the standard errors
to only 1 or 2% of the mean. By assuming a uniform distribution of grain
size in phi units within each sieve class, the standard error of each D value
is less than 1%.

Figure 3 shows the fit of Equation 4 with its ‘‘intermediate’’ coefficients
to these new measurements. The curve is plotted for a submerged specific
gravity of R 5 1.65 and a kinematic viscosity of n 5 9.2 3 1027 m2s21.
It fits the data extremely well. Seven data points are slightly above the
curve, four slightly below. Error bars are not plotted because they are too
small for clarity, but we can report that the 95% confidence boxes for seven
points intersect the curve, three are just above it, one just below, and one
substantially below (D 5 0.77 mm, with a prediction error of 113%). The
rms error is 6 6%.

Table 3 compares the goodness of fit of alternative equations to the new
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data in the same way as in Table 1. The equation of Ahrens (2000), which
fitted Raudkivi’s data best of all (Table 1), also performs well on the new
data but gives a rather higher rmse (9%) than Equation 4. The equations
of Dietrich (1982; ‘‘natural’’ parameters) and Cheng (1997) also fit the
data well (rmse 6% and 7%, respectively) once sieve diameters are in-
creased by 10% as estimates of nominal diameter. But once again these
excellent fits by previously published equations are matched by our equa-
tion either as above or using nominal diameter and Dietrich-equivalent
parameters (C1 5 20, C2 5 1.1; rmse 6%).

CONCLUSIONS

Several authors have suggested universal or multi-part relations between
fall velocity w and particle diameter D that span the transitional size range
in which both viscous and inertial forces are important. For quartz-density
particles in water this range is from fine sand to granules. We have derived
a simple explicit formula (Equation 4) for all grain sizes, including the
transitional range, from a new dimensional analysis of the problem together
with the assumptions that the relation must reduce to Stokes’ law for fine
sediment and a constant drag coefficient for coarse sediment. The proposed
equation is dimensionally correct and includes the effects of viscosity and
submerged specific gravity. It contains only two coefficients, which is fewer
than any previous relation, and both of them are physical parameters rather
than empirical ‘‘fudge factors’’ as in most other equations. One (C1 in
Equation 4) is the constant in Stokes’ equation for laminar settling; the
other (C2) is the constant drag coefficient for particle Reynolds numbers
exceeding 103. For smooth spheres these parameters take values 18 and
0.4, respectively. For typical natural sands we suggest 18 and 1.0 where
sieve diameters are used, or 20 and 1.1 where nominal diameters are used.
These values give excellent fits to two existing experimental data sets and
one new set, all for natural sands of nonspherical shape. A likely limit for
very angular grains is C1 5 24, C2 5 1.2.

An important advantage of the new equation for many purposes is its
simplicity. This makes it easy to incorporate in computer models of larger-
scale sediment-transport and sedimentation problems. A second advantage
is that the equation can be used with either sieve diameters or nominal
diameters, by adjusting the parameter values slightly as suggested above.
The equation may be useful in a range of applications in physical sedi-
mentology and engineering.
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