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1. Introduction

● The Hawaiian islands are part of the age progressive series of 
volcanoes that form the Hawaiian-Emperor seamount chain. At 
Haleakala, on the island of Maui, basanitic lavas of the Hana 
Volcanics represent end-member rejuvenated stage alkaline 
magmatism (Clauge, 1987).  Although shield-stage tholeiitic 
volcanism predominates in the Hawaiian islands, alkaline lavas 
erupted on the trailing edge of the Hawaiian plume present an 
important component to understanding mantle melting and solid 
mantle upwelling.

● We present geochemical data for 13 samples from Haleakala 
crater.  14C ages for seven samples range from 870 ± 40 to 4070 ± 50 
years (Sherrod and McGeehin, 1999).  Preliminary data for 5 
samples from the Haleakala southwest rift zone (Sims et al., 1999) 
are consistent with iso-viscous (Watson and McKenzie, 1991) and 
thermo-viscous (Hauri et al., 1994) fluid mechanical models of 
plume upwelling in which upwelling rates are slower on the 
periphery of plume.
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2. Major and Trace Element Geochemistry and Long-lived Radiogenic Isotopes

 ● Haleakala crater and SW rift zone basanites have lower 
SiO2 and higher alkali contents and exhibit an enrichment 
in incompatible trace elements compared to other young 
Hawaiian lavas (above).

● Haleakala basanites fall within the global range of major 
and trace element compositions for alkaline volcanic rocks 
and do not define an extreme alkaline end member.  For 
example, compare the trace element pattern for Haleakala 
basanites with Nyiragongo lavas (above).

● In comparison with other young Hawaiian lavas, 
Haleakala basanites exhibit higher εNd (and εHf) and lower 
87Sr/86Sr values, implying a greater contribution from a 
depleted source in these late-stage alkaline magmas (left). 
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Sims et al., 1999 inverted D values (shown in models above)
Maximum porosity 0.5-0.7% 0.2-0.3% 0.2-0.3%
Solid mantle upwelling velocity 20-40 cm/yr approx. 2 cm/yr 0.7-0.9 cm/yr

Salters and Longhi, 1999 D values
Maximum porosity 2-3% (25% melting) approx. 1% approx. 1%
Solid mantle upwelling velocity 30-80 cm/yr (25% melting) 4-8 cm/yr approx. 1 cm/yr

Lundstrom et al., 1994 D values
Maximum porosity 1-2% approx. 0.6% no convergence
Solid mantle upwelling velocity 20-50 cm/yr approx. 2 cm/yr no convergence

● Chromatographic porous flow modeling 
(Spiegelman, 2000) shows that solid mantle 
upwelling velocities and porosities on the 
periphery of the Hawaiian plume are 
lower than at the plume center.

* Includes data from 
Pietruszka et al. (2001), 
Cohen et al. (1996), and 
Cohen and O’Nions 
(1993).

4. Upwelling Velocity and Porosity of the Melt Zone

● All models utilize D values for a garnet 
peridotite source.  D values for a garnet 
pyroxenite source from Elkins et al. (2008) 
did not converge on a unique solution for 
any of the compositions. 
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3. U-series Isotopes
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● Haleakala lavas exhibit higher (230Th/238U) than other Hawaiian lavas, 
implying that they are the manifestation of a small degree of partial melting 
from a source containing residual garnet (upper left).
 
● Haleakala basanites exhibit higher (226Ra/230Th) and (231Pa/235U) than shield 
stage tholeiites from Kilauea and Mauna Loa and fall within the global range of 
alkaline volcanics based on U-series isotopic composition (above right).

● Dynamic melting models (after McKenzie, 1985) show that melting rates for 
Haleakala basanites are between approximately 1x10-5 and 1x10-4 kg m-3 yr-1 
with melt-zone porosity from 0.2% to 0.5%, significantly lower than shield stage 
tholeiites (above right).

Lines of constant 
porosity (Φ)
Lines of constant 
melting rate (Γ; 
kg m-3yr-1) 
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5. Conclusions

● New data from Haleakala crater basanites reveal that these lavas result from a small degree of 
partial melting.  Their depleted isotopic signature suggests that a MORB-like component mixed 
with plume source material to produce these alkaline lavas.

● U-series isotopes shed light on Hawaiian plume dynamics and show that solid mantle 
upwelling rates and porosities on the periphery of the plume, represented by Haleakala 
basanites, are much lower than at the center of the plume.

● Chromatographic porous flow modeling suggests that garnet peridotite is a more likely source 
for Hawaiian lavas than garnet pyroxenite.  Previous interpretations preclude mafic lithologies in 
the source of Hawaiian lavas (Stracke et al., 1999), although this remains controversial (e.g., 
Wang and Gaetani, 2008; Sobolev et al., 2005).  

● Haleakala crater basanites represent an end-member in the range of Hawaiian lavas, but fall 
within the global array of alkaline volcanism in the context of major and trace element 
geochemistry and isotopic signatures.


