

Integrated workflow for surface-wave dispersion inversion and profiling

Sylvain PASQUET^{1,*} and Ludovic BODET²

While surface-wave prospecting methods are classically applied for the one-dimensional (1D) estimation of shear (S-) wave velocities (Vs), two-dimensional (2D) profiling still requires implementing specific processing and inversion tools that are not yet widely available in the community. We present here a MATLAB-based, free and open-source tool performing surface-wave inversion and profiling (SWIP) to retrieve 2D lateral variations of Vs from typical seismic shot records. The workflow is presented using real field data collected in a shallow hydrothermal system in Yellowstone National Park.

Acquisition setup and data format

Classical refrac./reflec. setup => hammer/plate + vertical component geophones Able to manage **multi-deployment** and **multi-shot acquisition** setups Handles data with open software **Seismic Unix** => SEG2 to SU converter included

Gx (m Gx (m)

Data windowing and dispersion extraction

Data windowing to consider a 1D medium (O'Neill *et al.*, 2003, Neducza, 2007) => selection of seismic data subsets centered on a specific position (**Xmid**) => extraction of seismic data for each shot illuminating the selected subset => wavefield transform to *f-c* domain (Mokhtar *et al.*, 1988) = **dispersion image**

Dispersion stacking and picking

Stacking of dispersion images computed at each Xmid position => increase **signal-to-noise** ratio and help **mode identification Shift window** along the line to obtain a set of stacked dispersion images => large overlap between windows = smooth lateral variations

Gx (m) Xmid = 30 m40 60 80 100 120 140 160 180 200 220 240

Dispersion inversion

Separate inversion of dispersion curves for each Xmid with the Neighborhood Algorithm implemented in the open software Geopsy (Wathelet et al., 2004)

=> **depth of investigation** estimated at each Xmid from **standard** deviation of all selected models

¹ University of Wyoming, Dept. of Geology and Geophyics, Laramie, Wyoming, USA ² Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7619 METIS, Paris, FRANCE spasquet@uwyo.edu -- http://geoweb.uwyo.edu/post-doc/spasquet/

Poisson's ratio calculation

When Vp is available along the line (e.g. from tomographic inversion), Vp/Vs and **Poisson's ratio** (v) are calculated using Vs obtained from SWIP => supplementary information to discriminate lithology/saturation

X (m)

References

Mokhtar *et al.* (1988), *Geophys.*, **53** O'Neill et al. (2003), Explor. Geophys., 34

Neducza (2007), *Geophys.*, **72** Wathelet et al. (2004), Near Surf. Geophys., 2